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Abstract
The chemical properties of stars are normally derived from spectroscopic measurements, where such properties can give astronomers a glimpse into the environment in which
these stars were born. However, this method can be difficult and more time consuming to obtain for low-mass stars in particular, due their relative faintness on the sky. On the
other hand, photometry of low-mass stars is widely available due to the many all-sky surveys that have been conducted over the past couple of decades. To take advantage of this,
we have calibrated a new relationship that predicts chemical properties of low-mass stars from multiple photometric measurements using machine learning with a Gaussian Process
Regressor. We show that this regressor is able to predict these chemical properties with a high level of accuracy (±0.11 dex), while also mitigating systematic errors that were
present in previous metallicity calibration attempts. Specifically, our technique avoids these systematic errors by removing unresolved binary star systems present in our sample
before training the regressor, using an iterative method described here. The addition of this step in our method is crucial, as individual properties for the stars in unresolved systems
cannot be derived accurately because of the blending of light from both objects. This newly calibrated relationship now allows for the chemical properties of ~107 stars in the vicinity
of the Sun to be estimated. These metallicities can be utilized in many areas of research. For example, we discuss here how we plan to use this relationship to study local streams in
the vicinity of the Sun, and determine how their kinematic properties are related to stellar chemistry. Relationships between chemistry and kinematics of these groups will allow us
to have a better understanding of the origins and histories of these streams, and relate them to dynamical interactions with spiral arms and/or bar-like features in our Galaxy.
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To esMmate the chemical properMes of a star, we use photometric measurements as
inputs for our relaMonship. For the calibraMon dataset used to train our Gaussian
process regressor, we use photometry from various astronomical surveys, shown to
the right. All possible color combinaMons are used for the iniMal inputs, where a
“color” is defined as the difference between two photometric measurements.
AddiMonally, we obtain distance measurements for all stars in our calibraMon sample,
so we can calculate their absolute magnitudes, i.e. the measure of the luminosity of
the stars, which are also used in the iniMal inputs. Cross-idenMficaMon of stars
between these surveys is from our Bayesian cross-match of 5,827,988 high proper
moMon stars in Gaia (Medan, Lépine & Hartman in prep.).

Pan-STARRS1: five 
optical photometric 

measurements 
(g,r,i,z,y)

2MASS2: three near-
infrared photometric 

measurements 
(J,H,Ks)

AllWISE3: two 
infrared photometric 

measurements 
(W1,W2)

Gaia4: parallax 
measurements, 

used to calculate 
distance
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APOGEE5: metallicity derived from high 
resolution spectra in near-infrared

Hejazi et al.6: metallicity derived from 
observations at MDM, Lick, Kitt-Peak and 

Cerro-Tololo Observatories 

Image credit: Pan-STARRS Image credit: IPAC/CalTech Image credit: NASA JPL Image credit: ESA

To evaluate the Gaussian Process Regressor during training, the chemical
properties of the stars in the calibration sample are obtained from two
spectroscopic surveys (left). For the outputs, we use the average metallicity of
the stars, which is the abundance of elements heavier than hydrogen or helium.
The metallicity values are determined from model fits of spectra from stars with
3500<Teff<5280 K, which are typical for low-mass stars. Our calibration sample
comprises 6,370 stars with required inputs (photometry) and outputs
(metallicity).Image credit: SDSS-III Image credit: H. Stockebrand
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Photometric Metallicity Calibration Procedure
Our photometric metallicity relaMonship is calibrated using a Gaussian Process Regressor implemented in scikit-learn7 with an RBF kernel and a white-noise kernel proporMonal to the
average error of the derived metalliciMes. QualitaMvely, the RBF kernel in our Gaussian Process assumes that funcMonal values are more correlated when the inputs are closer, as
opposed to farther away. The white-noise kernel then simply adds idenMcally distributed noise over the enMre funcMon range. Before calibraMon, all photometry is corrected for
exMncMon using a 3D dust map8 in combinaMon with the proper exMncMon law for the measurement9,10. To calibrate this Gaussian Process Regressor, the following procure is used:
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Fit and evaluate regressor with all 
remaining combinations of 

colors/magnitudes as inputs

Systematically remove each 
remaining input and fit/re-

evaluate regressor

Remove color/magnitude 
that has least effect on 

regression

Identify final inputs as those that 
minimized mean squared error 

for entire process

If N inputs = 1

If N inputs > 1

For Step 1, we determine the
input colors and absolute
magnitudes using the iteraMve
method shown to the right. The
final color and absolute
magnitude remaining during this
process will be used to form the
HR diagrams below in Step 2.
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For Step 2, we remove unresolved binaries (UBs) from our
calibration sample. 4th degree polynomials are fit to HR
diagrams of absolute magnitude vs. color (from Step 1) in
bins of average metallicity, [M/H]=0.1 dex. Stars that are
over-/under-luminous compared to the fit, as expected of
UBs, are removed (black dots). The fit is repeated and UBs
removed until the solution converges and no more UBs are
identified.

When comparing the HR diagram for the original sample to the cleaned sample, the sample now appears
significantly cleaned after the removal of the UBs. When comparing the samples using only colors, represented
with the color-color diagrams, it is clear such contaminants would not have been noticed. We find the removal of
these contaminants is crucial, as metallicity values derived from spectra of UBs are unreliable due to the blending
of light from both stars in the system.

Color-Color Diagrams
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For Step 3, we redo the regression with the cleaned sample from Step 2. This includes repeating the procedure from
Step 1 to determine the input colors and magnitudes for the final Gaussian Process Regressor, but this time using the
cleaned sample. This results in the following optimal inputs: Mg, g−y, y−W2, J−W2 and W1−W2. The comparison of the
measured and predicted metallicity values are shown to the right for the training sample (sample used to train the
regressor) and testing sample (sample used to evaluate the regressor). An average 1σ scatter of 0.11 dex is found in
the testing subset.

First Iteration Last IteraMon

Original Sample
N=6370

HR Diagrams

Cleaned Sample
N=4378

Original Sample
N=6370

Cleaned Sample
N=4378

Training Sample Testing Sample



Comparing Improved Calibration

Schmidt et al.11 calibrated a
photometric metallicity relationship
using a polynomial regression to SDSS
and WISE colors for a calibration
sample of ~3800 APOGEE sources. This
resulted in a relationship with a
precision of ~0.18 dex, though
systematic errors are present.

Davenport et al.12 calibrated a
photometric metallicity relationship
using a k-nearest neighbors regressor
to Gaia, 2MASS and WISE colors for a
calibration sample of ~35,000 APOGEE
sources. This resulted in a relationship
with a precision of ~0.11 dex, though
significant systematic errors are also
present.

Results from the present study when
the Gaussian Process Regressor is
trained on the original sample that
contains unresolved binaries.
Systematic errors similar to past
studies are observed, suggesting that
such errors in these studies were due
to unresolved binaries included in the
calibration samples.

Results from the present study when
the Gaussian Process Regressor is
trained on the cleaned sample free of
unresolved binaries. This results in a
relationship with a precision of ~0.11
dex. Compared with previous
calibrations, our result is largely free of
systematic errors in the range of
-0.6<[M/H]<0.5 dex.

Schmidt et al. Davenport et al. This Study – Original Sample

Below, we compare the results of our calibrated photometric metallicity relationship to previous studies that have used photometry in combination with metallicities from APOGEE
to calibrate similar relationships. Each of these plots show the residual metallicity (i.e. difference between the predicted and measured metallicity) vs. the measured metallicity.
Some of these results exhibit systematic errors where metal-poor stars’ (i.e. [M/H]<0) metallicities are over-estimated and metal-rich stars’ (i.e. [M/H]>0) metallicities are under-
estimated. The cause of these systematics, along with summaries of each relationship, are discussed below.

Effec%ve Temperature Total within 500 pc Parallax Error  < 10%

3500<Teff<5280 K 37,363,898 6,407,041

Teff<3500 K 12,430,300 5,065,645

Implication of Extending Calibration
The table to right shows the number of stars in the Gaia catalog that are within 500 pc of the Sun for
different temperature ranges. The top row is for the range covered by our relationship, where there are
~107 stars whose metallicity could be estimated. Our goal is now to calibrate a similar relationship for the
cooler stars, which would double our sample. We feel that future work in extending our calibration would
then be extremely beneficial to the astronomical community who benefit from this metallicity data.

This Study – Cleaned Sample



Chemodynamical Structure

Below we examine how the metallicity of
local stars relates to their kinematics by
looking at the distribution in estimated
metallicity from our relationship for stars
with different tangential velocities. We see a
general decrease in metallicity for stars with
increased velocity, a trend seen in multiple
studies13,14,15,16. Broadly, this trend is due to
the multiple components that make up the
Milky Way. The disk components consist of
younger metal-rich stars that reside in the
plane of the Galaxy and have more circular
orbits, while the halo component consists of
older metal-poor stars that reside out of the
plane and have more elliptical orbits.

Above we examine a more detailed relationship between chemistry and kinematics, where we plot the radius of a circular orbit
with the same angular momentum as a star, xmix, (this acts as a de-projection of a star’s velocity in the direction the Galactic
rotation)17 vs. the velocity in the direction of the Galactic anti-center, U, for stars with different metallicities estimated from our
relationship. In each of these figures, we see clumps in velocity space, whose substructure/morphology is found to be dependent
on metallicity. For example, some of these clumps only become apparent at higher metallicities (i.e. the “Hercules Streams”18,

indicated by the red ellipse), while others seem to completely change their shape as the metallicity increases (i.e. ”Coma
Berenices”, indicated by the blue ellipse). Similar changes have been observed in past studies that utilize metallicities derived
from spectroscopy19, but with our photometric metallicity relationship we have the potential to examine these changes in
greater detail due to the much larger sample size available from using low-mass stars. Such a detailed study would be helpful in
the understanding of the origins and histories of these streams, and how they tie into the dynamical history of the Milky Way.
For example, multiple metallicity components within a stream could indicate multiple major star formation events during the
stream’s history. We look forward to examining such details with our newly calibrated relationship using the data from the Gaia
survey.
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